Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nature ; 614(7949): 781-787, 2023 02.
Article in English | MEDLINE | ID: covidwho-2221840

ABSTRACT

The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate3,4. Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5' RNA cap6.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase , Cryoelectron Microscopy , SARS-CoV-2 , Humans , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Coronavirus RNA-Dependent RNA Polymerase/ultrastructure , COVID-19/virology , Nucleosides/metabolism , Nucleosides/pharmacology , RNA, Viral/biosynthesis , RNA, Viral/chemistry , RNA, Viral/metabolism , SARS-CoV-2/enzymology , Substrate Specificity , Guanosine Triphosphate/metabolism , RNA Caps
2.
Commun Biol ; 5(1): 925, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-2008334

ABSTRACT

RNA replication and transcription machinery is an important drug target for fighting against coronavirus. Non-structure protein nsp8 was proposed harboring primase activity. However, the RNA primer synthesis mechanism of nsp8 is still largely unknown. Here, we purified dimer and tetramer forms of SARS-CoV-2 nsp8. Combined with dynamic light scattering, small-angle neutron scattering and thermo-stability analysis, we found that both dimer and tetramer become loosened and destabilized with decreasing salt concentration, and the dimer form is more stable than the tetramer form. Further investigation showed that nsp8 dimer and tetramer can undergo phase separation but exhibit different phase separation behaviors. Nsp8 dimer can form liquid-like droplets in the buffer with a low concentration of NaCl; phase separation of nsp8 tetramer depends on the assistance of RNA. Our findings on different phase separation behaviors of nsp8 dimer and tetramer may provide insight into the functional studies of nsp8 in coronavirus.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2 , Viral Nonstructural Proteins , Amino Acid Sequence , Coronavirus RNA-Dependent RNA Polymerase/chemistry , RNA/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/chemistry
3.
J Virol ; 96(16): e0067122, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1973790

ABSTRACT

Positive-strand RNA viruses replicate their genomes using virally encoded RNA-dependent RNA polymerases (RdRP) with a common active-site structure and closure mechanism upon which replication speed and fidelity can evolve to optimize virus fitness. Coronaviruses (CoV) form large multicomponent RNA replication-transcription complexes containing a core RNA synthesis machine made of the nsp12 RdRP protein with one nsp7 and two nsp8 proteins as essential subunits required for activity. We show that assembly of this complex can be accelerated 5-fold by preincubation of nsp12 with nsp8 and further optimized with the use of a novel nsp8L7 heterodimer fusion protein construct. Using rapid kinetics methods, we measure elongation rates of up to 260 nucleotides (nt)/s for the core replicase, a rate that is unusually fast for a viral polymerase. To address the origin of this fast rate, we examined the roles of two CoV-specific residues in the RdRP active site: Ala547, which replaces a conserved glutamate above the bound NTP, and Ser759, which mutates the palm domain GDD sequence to SDD. Our data show that Ala547 allows for a doubling of replication rate, but this comes at a fidelity cost that is mitigated by using a SDD sequence in the palm domain. Our biochemical data suggest that fixation of mutations in polymerase motifs F and C played a key role in nidovirus evolution by tuning replication rate and fidelity to accommodate their large genomes. IMPORTANCE Replicating large genomes represents a challenge for RNA viruses because fast RNA synthesis is needed to escape innate immunity defenses, but faster polymerases are inherently low-fidelity enzymes. Nonetheless, the coronaviruses replicate their ≈30-kb genomes using the core polymerase structure and mechanism common to all positive-strand RNA viruses. The classic explanation for their success is that the large-genome nidoviruses have acquired an exonuclease-based repair system that compensates for the high polymerase mutation rate. In this work, we establish that the nidoviral polymerases themselves also play a key role in maintaining genome integrity via mutations at two key active-site residues that enable very fast replication rates while maintaining typical mutation rates. Our findings further demonstrate the evolutionary plasticity of the core polymerase platform by showing how it has adapted during the expansion from short-genome picornaviruses to long-genome nidoviruses.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/chemistry , Severe acute respiratory syndrome-related coronavirus , Catalytic Domain , Genome, Viral , RNA/metabolism , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , Severe acute respiratory syndrome-related coronavirus/physiology , Virus Replication
4.
Proc Natl Acad Sci U S A ; 119(16): e2117142119, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1774040

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key enzyme, which extensively digests CoV replicase polyproteins essential for viral replication and transcription, making it an attractive target for antiviral drug development. However, the molecular mechanism of how Mpro of SARS-CoV-2 digests replicase polyproteins, releasing the nonstructural proteins (nsps), and its substrate specificity remain largely unknown. Here, we determine the high-resolution structures of SARS-CoV-2 Mpro in its resting state, precleavage state, and postcleavage state, constituting a full cycle of substrate cleavage. The structures show the delicate conformational changes that occur during polyprotein processing. Further, we solve the structures of the SARS-CoV-2 Mpro mutant (H41A) in complex with six native cleavage substrates from replicase polyproteins, and demonstrate that SARS-CoV-2 Mpro can recognize sequences as long as 10 residues but only have special selectivity for four subsites. These structural data provide a basis to develop potent new inhibitors against SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Polyproteins/chemistry , Protein Conformation , Proteolysis , SARS-CoV-2/enzymology , Substrate Specificity/genetics
5.
Appl Biochem Biotechnol ; 194(1): 291-301, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1748423

ABSTRACT

Corona virus pandemic outbreak also known as COVID-19 has created an imbalance in this world. Scientists have adopted the use of natural or alternative medicines which are consumed mostly as dietary supplements to boost the immune system as herbal remedies. India is famous for traditional medicinal formulations which includes 'Trikadu'-a combination of three acrids, namely Zingiber officinale, Piper nigrum and Piper longum which have antioxidant properties that boost our immune system hence acting as a strong preventive measure. In this study, AutoDock 4.0 was used to study interaction between the phytocompounds of Trikadu with RNA-dependent polymerase protein and enveloped protein of the SARS-CoV-2 virus. Analysis of the results showed that coumarin, coumaperine and bisdemethoxycurcumin showed strong bonding interactions with both the proteins. We can conclude that Trikadu has the potential molecules; hence, it can be incorporated in the diet to boost the immune system as a preventive measure against the virus.


Subject(s)
COVID-19 Drug Treatment , COVID-19/immunology , Phytotherapy , Plant Preparations/therapeutic use , SARS-CoV-2 , Antioxidants/isolation & purification , Antioxidants/therapeutic use , COVID-19/virology , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/drug effects , Dietary Supplements , Ginger/chemistry , Humans , Immune System/drug effects , India , Ligands , Medicine, Traditional , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Piper/chemistry , Piper nigrum/chemistry , Plant Preparations/isolation & purification , Plants, Medicinal/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/drug effects
6.
Virology ; 567: 1-14, 2022 02.
Article in English | MEDLINE | ID: covidwho-1628759

ABSTRACT

The coronavirus nucleocapsid (N) protein comprises two RNA-binding domains connected by a central spacer, which contains a serine- and arginine-rich (SR) region. The SR region engages the largest subunit of the viral replicase-transcriptase, nonstructural protein 3 (nsp3), in an interaction that is essential for efficient initiation of infection by genomic RNA. We carried out an extensive genetic analysis of the SR region of the N protein of mouse hepatitis virus in order to more precisely define its role in RNA synthesis. We further examined the N-nsp3 interaction through construction of nsp3 mutants and by creation of an interspecies N protein chimera. Our results indicate a role for the central spacer as an interaction hub of the N molecule that is partially regulated by phosphorylation. These findings are discussed in relation to the recent discovery that nsp3 forms a molecular pore in the double-membrane vesicles that sequester the coronavirus replicase-transcriptase.


Subject(s)
Coronavirus Nucleocapsid Proteins/metabolism , Intracellular Membranes/metabolism , Viral Replicase Complex Proteins/metabolism , Amino Acid Motifs , Animals , Cell Line , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Mice , Murine hepatitis virus , Mutation , Protein Binding , Protein Domains , RNA, Viral/biosynthesis , Viral Replicase Complex Proteins/chemistry , Viral Replicase Complex Proteins/genetics , Viral Replication Compartments/metabolism
7.
Int J Mol Sci ; 23(1)2022 Jan 04.
Article in English | MEDLINE | ID: covidwho-1613825

ABSTRACT

(1R,5S)-1-Hydroxy-3,6-dioxa-bicyclo[3.2.1]octan-2-one, available by an efficient catalytic pyrolysis of cellulose, has been applied as a chiral building block in the synthesis of seven new nucleoside analogues, with structural modifications on the nucleobase moiety and on the carboxyl- derived unit. The inverted configuration by Mitsunobu reaction used in their synthesis was verified by 2D-NOESY correlations, supported by the optimized structure employing the DFT methods. An in silico screening of these compounds as inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase has been carried out in comparison with both remdesivir, a mono-phosphoramidate prodrug recently approved for COVID-19 treatment, and its ribonucleoside metabolite GS-441524. Drug-likeness prediction and data by docking calculation indicated compound 6 [=(3S,5S)-methyl 5-(hydroxymethyl)-3-(6-(4-methylpiperazin-1-yl)-9H-purin-9-yl)tetrahydrofuran-3-carboxylate] as the best candidate. Furthermore, molecular dynamics simulation showed a stable interaction of structure 6 in RNA-dependent RNA polymerase (RdRp) complex and a lower average atomic fluctuation than GS-441524, suggesting a well accommodation in the RdRp binding pocket.


Subject(s)
Antiviral Agents/chemical synthesis , Cellulose/chemistry , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Nucleosides/chemical synthesis , SARS-CoV-2/enzymology , Adenosine/analogs & derivatives , Adenosine/chemistry , Adenosine/pharmacokinetics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacokinetics , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacokinetics , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Computational Biology , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleosides/chemistry , Nucleosides/pharmacokinetics , Pyrolysis , SARS-CoV-2/drug effects
8.
J Comput Biol ; 28(12): 1228-1247, 2021 12.
Article in English | MEDLINE | ID: covidwho-1545879

ABSTRACT

The detrimental effect of coronavirus disease 2019 (COVID-19) pandemic has manifested itself as a global crisis. Currently, no specific treatment options are available for COVID-19, so therapeutic interventions to tackle the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection must be urgently established. Therefore, cohesive and multidimensional efforts are required to identify new therapies or investigate the efficacy of small molecules and existing drugs against SARS-CoV-2. Since the RNA-dependent RNA Polymerase (RdRP) of SARS-CoV-2 is a promising therapeutic target, this study addresses the identification of antiviral molecules that can specifically target SARS-CoV-2 RdRP. The computational approach of drug development was used to screen the antiviral molecules from two antiviral libraries (Life Chemicals [LC] and ASINEX) against RdRP. Here, we report six antiviral molecules (F3407-4105, F6523-2250, F6559-0746 from LC and BDG 33693278, BDG 33693315, LAS 34156196 from ASINEX), which show substantial interactions with key amino acid residues of the active site of SARS-CoV-2 RdRP and exhibit higher binding affinity (>7.5 kcalmol-1) than Galidesivir, an Food and Drug Administration-approved inhibitor of the same. Further, molecular dynamics simulation and Molecular Mechanics Poisson-Boltzmann Surface Area results confirmed that identified molecules with RdRP formed higher stable RdRP-inhibitor(s) complex than RdRP-Galidesvir complex. Our findings suggest that these molecules could be potential inhibitors of SARS-CoV-2 RdRP. However, further in vitro and preclinical experiments would be required to validate these potential inhibitors of SARS-CoV-2 protein.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Computational Chemistry/methods , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Pandemics , SARS-CoV-2/drug effects , Amino Acid Motifs , Amino Acid Sequence , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Catalytic Domain/drug effects , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Databases, Chemical , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Protein Conformation , SARS-CoV-2/enzymology , Sequence Alignment , Sequence Homology, Amino Acid , Small Molecule Libraries
9.
Infect Genet Evol ; 97: 105153, 2022 01.
Article in English | MEDLINE | ID: covidwho-1521407

ABSTRACT

Amid the ongoing COVID-19 pandemic, it has become increasingly important to monitor the mutations that arise in the SARS-CoV-2 virus, to prepare public health strategies and guide the further development of vaccines and therapeutics. The spike (S) protein and the proteins comprising the RNA-Dependent RNA Polymerase (RdRP) are key vaccine and drug targets, respectively, making mutation surveillance of these proteins of great importance. Full protein sequences were downloaded from the GISAID database, aligned, and the variants identified. 437,006 unique viral genomes were analyzed. Polymorphisms in the protein sequence were investigated and examined longitudinally to identify sequence and strain variants appearing between January 5th, 2020 and January 16th, 2021. A structural analysis was also performed to investigate mutations in the receptor binding domain and the N-terminal domain of the spike protein. Within the spike protein, there were 766 unique mutations observed in the N-terminal domain and 360 in the receptor binding domain. Four residues that directly contact ACE2 were mutated in more than 100 sequences, including positions K417, Y453, S494, and N501. Within the furin cleavage site of the spike protein, a high degree of conservation was observed, but the P681H mutation was observed in 10.47% of sequences analyzed. Within the RNA dependent RNA polymerase complex proteins, 327 unique mutations were observed in Nsp8, 166 unique mutations were observed in Nsp7, and 1157 unique mutations were observed in Nsp12. Only 4 sequences analyzed contained mutations in the 9 residues that directly interact with the therapeutic Remdesivir, suggesting limited mutations in drug interacting residues. The identification of new variants emphasizes the need for further study on the effects of the mutations and the implications of increased prevalence, particularly for vaccine or therapeutic efficacy.


Subject(s)
COVID-19/epidemiology , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Genome, Viral , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Africa/epidemiology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Asia/epidemiology , Binding Sites , COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Databases, Factual , Epidemiological Monitoring , Europe/epidemiology , Evolution, Molecular , Furin/genetics , Furin/metabolism , Gene Expression , Humans , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , United States/epidemiology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , COVID-19 Drug Treatment
10.
Biologicals ; 75: 29-36, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1517058

ABSTRACT

The RNA dependent RNA polymerase (RdRp) plays crucial role in virus life cycle by replicating the viral genome. The SARS-CoV-2 is an RNA virus that rapidly spread worldwide and acquired mutations. This study was carried out to identify mutations in RdRp as the SARS-CoV-2 spread in India. We compared 50217 RdRp sequences reported from India with the first reported RdRp sequence from Wuhan, China to identify 223 mutations acquired among Indian isolates. Our protein modelling study revealed that several mutants can potentially alter stability and flexibility of RdRp. We predicted the potential B cell epitopes contributed by RdRp and identified thirty-six linear continuous and twenty-five discontinuous epitopes. Among 223 RdRp mutants, 44% of them localises in the B cell epitopes region. Altogether, this study highlights the need to identify and characterize the variations in RdRp to understand the impact of these mutations on SARS-CoV-2.


Subject(s)
COVID-19/immunology , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Mutation , SARS-CoV-2/enzymology , COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Enzyme Stability/genetics , Humans , India , SARS-CoV-2/genetics , SARS-CoV-2/immunology
11.
Sci Rep ; 11(1): 18851, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434149

ABSTRACT

In this pandemic SARS-CoV-2 crisis, any attempt to contain and eliminate the virus will also stop its spread and consequently decrease the risk of severe illness and death. While ozone treatment has been suggested as an effective disinfection process, no precise mechanism of action has been previously reported. This study aimed to further investigate the effect of ozone treatment on SARS-CoV-2. Therefore, virus collected from nasopharyngeal and oropharyngeal swab and sputum samples from symptomatic patients was exposed to ozone for different exposure times. The virus morphology and structure were monitored and analyzed through Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Atomic Absorption Spectroscopy (AAS), and ATR-FTIR. The obtained results showed that ozone treatment not only unsettles the virus morphology but also alters the virus proteins' structure and conformation through amino acid disturbance and Zn ion release from the virus non-structural proteins. These results could provide a clearer pathway for virus elimination and therapeutics preparation.


Subject(s)
COVID-19 Drug Treatment , Ozone/pharmacology , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Humans , Microscopy, Electron, Transmission , Protein Structure, Secondary/drug effects , Protein Structure, Tertiary/drug effects , SARS-CoV-2/ultrastructure , Time Factors , Viral Envelope/chemistry , Viral Envelope/drug effects , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism , Zinc/chemistry , Zinc/metabolism
12.
PLoS Comput Biol ; 17(9): e1009384, 2021 09.
Article in English | MEDLINE | ID: covidwho-1405333

ABSTRACT

Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of RdRp from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, we predict that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds nucleoside triphosphates at its proposed active site. Additionally, using molecular docking we have predicted the binding of three widely used kinase inhibitors and five well characterized anti-microbial compounds at the NiRAN domain active site along with their drug-likeliness. For the first time ever, using basic biochemical tools, this study shows the presence of a kinase like activity exhibited by the SARS-CoV-2 RdRp. Interestingly, a well-known kinase inhibitor- Sorafenib showed a significant inhibition and dampened viral load in SARS-CoV-2 infected cells. In line with the current global COVID-19 pandemic urgency and the emergence of newer strains with significantly higher infectivity, this study provides a new anti-SARS-CoV-2 drug target and potential lead compounds for drug repurposing against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Protein Domains , SARS-CoV-2/drug effects , Catalytic Domain , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Humans
13.
Mol Med ; 27(1): 105, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1403209

ABSTRACT

BACKGROUND: Vaccination programs have been launched worldwide to halt the spread of COVID-19. However, the identification of existing, safe compounds with combined treatment and prophylactic properties would be beneficial to individuals who are waiting to be vaccinated, particularly in less economically developed countries, where vaccine availability may be initially limited. METHODS: We used a data-driven approach, combining results from the screening of a large transcriptomic database (L1000) and molecular docking analyses, with in vitro tests using a lung organoid model of SARS-CoV-2 entry, to identify drugs with putative multimodal properties against COVID-19. RESULTS: Out of thousands of FDA-approved drugs considered, we observed that atorvastatin was the most promising candidate, as its effects negatively correlated with the transcriptional changes associated with infection. Atorvastatin was further predicted to bind to SARS-CoV-2's main protease and RNA-dependent RNA polymerase, and was shown to inhibit viral entry in our lung organoid model. CONCLUSIONS: Small clinical studies reported that general statin use, and specifically, atorvastatin use, are associated with protective effects against COVID-19. Our study corroborrates these findings and supports the investigation of atorvastatin in larger clinical studies. Ultimately, our framework demonstrates one promising way to fast-track the identification of compounds for COVID-19, which could similarly be applied when tackling future pandemics.


Subject(s)
Antiviral Agents/pharmacology , Atorvastatin/pharmacology , COVID-19 Drug Treatment , Lung/drug effects , Organoids/drug effects , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Atorvastatin/chemistry , COVID-19/prevention & control , Cell Line , Coronavirus 3C Proteases/chemistry , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Doxycycline/pharmacology , Drug Approval , Drug Repositioning , Gene Expression Regulation/drug effects , Humans , Lung/virology , Models, Biological , Molecular Docking Simulation , Organoids/virology , Raloxifene Hydrochloride/chemistry , Raloxifene Hydrochloride/pharmacology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Trifluoperazine/chemistry , Trifluoperazine/pharmacology , United States , United States Food and Drug Administration , Vesiculovirus/genetics , Virus Internalization/drug effects
14.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1389394

ABSTRACT

SARS-CoV-2 currently lacks effective first-line drug treatment. We present promising data from in silico docking studies of new Methisazone compounds (modified with calcium, Ca; iron, Fe; magnesium, Mg; manganese, Mn; or zinc, Zn) designed to bind more strongly to key proteins involved in replication of SARS-CoV-2. In this in silico molecular docking study, we investigated the inhibiting role of Methisazone and the modified drugs against SARS-CoV-2 proteins: ribonucleic acid (RNA)-dependent RNA polymerase (RdRp), spike protein, papain-like protease (PlPr), and main protease (MPro). We found that the highest binding interactions were found with the spike protein (6VYB), with the highest overall binding being observed with Mn-bound Methisazone at -8.3 kcal/mol, followed by Zn and Ca at -8.0 kcal/mol, and Fe and Mg at -7.9 kcal/mol. We also found that the metal-modified Methisazone had higher affinity for PlPr and MPro. In addition, we identified multiple binding pockets that could be singly or multiply occupied on all proteins tested. The best binding energy was with Mn-Methisazone versus spike protein, and the largest cumulative increases in binding energies were found with PlPr. We suggest that further studies are warranted to identify whether these compounds may be effective for treatment and/or prophylaxis.


Subject(s)
Antiviral Agents/chemistry , Metals/chemistry , Methisazone/chemistry , Molecular Docking Simulation , SARS-CoV-2/chemistry , Antiviral Agents/metabolism , Calcium/chemistry , Calcium/metabolism , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Drug Design , Humans , Iron/chemistry , Iron/metabolism , Magnesium/chemistry , Magnesium/metabolism , Manganese/chemistry , Manganese/metabolism , Metals/metabolism , Methisazone/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Zinc/chemistry , Zinc/metabolism , COVID-19 Drug Treatment
15.
Cell ; 184(1): 184-193.e10, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1385213

ABSTRACT

Transcription of SARS-CoV-2 mRNA requires sequential reactions facilitated by the replication and transcription complex (RTC). Here, we present a structural snapshot of SARS-CoV-2 RTC as it transitions toward cap structure synthesis. We determine the atomic cryo-EM structure of an extended RTC assembled by nsp7-nsp82-nsp12-nsp132-RNA and a single RNA-binding protein, nsp9. Nsp9 binds tightly to nsp12 (RdRp) NiRAN, allowing nsp9 N terminus inserting into the catalytic center of nsp12 NiRAN, which then inhibits activity. We also show that nsp12 NiRAN possesses guanylyltransferase activity, catalyzing the formation of cap core structure (GpppA). The orientation of nsp13 that anchors the 5' extension of template RNA shows a remarkable conformational shift, resulting in zinc finger 3 of its ZBD inserting into a minor groove of paired template-primer RNA. These results reason an intermediate state of RTC toward mRNA synthesis, pave a way to understand the RTC architecture, and provide a target for antiviral development.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cryoelectron Microscopy , RNA, Messenger/chemistry , RNA, Viral/chemistry , SARS-CoV-2/chemistry , Viral Replicase Complex Proteins/chemistry , Amino Acid Sequence , Coronavirus/chemistry , Coronavirus/classification , Coronavirus/enzymology , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Methyltransferases/metabolism , Models, Molecular , RNA Helicases/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/enzymology , Sequence Alignment , Transcription, Genetic , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication
16.
Molecules ; 26(13)2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1383893

ABSTRACT

The work is devoted to the study of the complementarity of the electronic structures of the ligands and SARS-CoV-2 RNA-dependent RNA polymerase. The research methodology was based on determining of 3D maps of electron densities of complexes using an original quantum free-orbital AlteQ approach. We observed a positive relationship between the parameters of the electronic structure of the enzyme and ligands. A complementarity factor of the enzyme-ligand complexes has been proposed. The console applications of the AlteQ complementarity assessment for Windows and Linux (alteq_map_enzyme_ligand_4_win.exe and alteq_map_enzyme_ligand_4_linux) are available for free at the ChemoSophia webpage.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/chemistry , Electrons , SARS-CoV-2/enzymology , Algorithms , Amides/chemistry , Antiviral Agents/chemistry , Ligands , Molecular Structure , Protein Binding , Pyrazines/chemistry , Ribonucleosides/chemistry
17.
Cell Rep ; 36(9): 109650, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1363915

ABSTRACT

Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We use a high-throughput magnetic-tweezers approach to develop a mechanochemical description of this core polymerase. The core polymerase exists in at least three catalytically distinct conformations, one being kinetically consistent with incorporation of incorrect nucleotides. We provide evidence that the RNA-dependent RNA polymerase (RdRp) uses a thermal ratchet instead of a power stroke to transition from the pre- to post-translocated state. Ultra-stable magnetic tweezers enable the direct observation of coronavirus polymerase deep and long-lived backtracking that is strongly stimulated by secondary structures in the template. The framework we present here elucidates one of the most important structure-dynamics-function relationships in human health today and will form the grounds for understanding the regulation of this complex.


Subject(s)
COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/physiology , Nucleotides/metabolism , RNA, Viral/biosynthesis , SARS-CoV-2/physiology , Coronavirus RNA-Dependent RNA Polymerase/chemistry , High-Throughput Screening Assays , Humans , Models, Molecular , Molecular Conformation , Nucleotides/chemistry , RNA, Viral/chemistry , Single Molecule Imaging , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/physiology
18.
FEBS Lett ; 595(17): 2248-2256, 2021 09.
Article in English | MEDLINE | ID: covidwho-1326724

ABSTRACT

The endoplasmic reticulum transmembrane protein vesicle-associated membrane protein-associated protein (VAP) plays a central role in the formation and function of membrane contact sites (MCS) through its interactions with proteins. The major sperm protein (MSP) domain of VAP binds to a variety of sequences which are referred to as FFAT-like motifs. In this study, we investigated the interactions of eight peptides containing FFAT-like motifs with the VAP-A MSP domain (VAP-AMSP ) by solution NMR. Six of eight peptides are specifically bound to VAP-A. Furthermore, we found that the RNA-dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2 has an FFAT-like motif which specifically binds to VAP-AMSP as well as other FFAT-like motifs. Our results will contribute to the discovery of new VAP interactors.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/chemistry , Peptides/chemistry , SARS-CoV-2/enzymology , Vesicular Transport Proteins/chemistry , Amino Acid Motifs , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Humans , Nuclear Magnetic Resonance, Biomolecular , Peptides/metabolism , Protein Binding , SARS-CoV-2/metabolism , Vesicular Transport Proteins/metabolism
19.
Biochem Biophys Res Commun ; 571: 26-31, 2021 09 24.
Article in English | MEDLINE | ID: covidwho-1312941

ABSTRACT

The pandemic of SARS-CoV-2 has necessitated expedited research efforts towards finding potential antiviral targets and drug development measures. While new drug discovery is time consuming, drug repurposing has been a promising area for elaborate virtual screening and identification of existing FDA approved drugs that could possibly be used for targeting against functions of various proteins of SARS-CoV-2 virus. RNA dependent RNA polymerase (RdRp) is an important enzyme for the virus that mediates replication of the viral RNA. Inhibition of RdRp could inhibit viral RNA replication and thus new virus particle production. Here, we screened non-nucleoside antivirals and found three out of them to be strongest in binding to RdRp out of which two retained binding even using molecular dynamic simulations. We propose these two drugs as potential RdRp inhibitors which need further in-depth testing.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Amides/pharmacology , Antiviral Agents/chemistry , Benzimidazoles/pharmacology , COVID-19/virology , Carbamates/pharmacology , Catalytic Domain , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cyclopropanes/pharmacology , Drug Evaluation, Preclinical , Drug Repositioning , Fluorenes/pharmacology , Humans , Lactams, Macrocyclic/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Proline/analogs & derivatives , Proline/pharmacology , Protein Conformation , Quinoxalines/pharmacology , Sulfonamides/pharmacology
20.
Sci Signal ; 14(690)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1299215

ABSTRACT

Inorganic polyphosphates (polyPs) are linear polymers composed of repeated phosphate (PO4 3-) units linked together by multiple high-energy phosphoanhydride bonds. In addition to being a source of energy, polyPs have cytoprotective and antiviral activities. Here, we investigated the antiviral activities of long-chain polyPs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In molecular docking analyses, polyPs interacted with several conserved amino acid residues in angiotensin-converting enzyme 2 (ACE2), the host receptor that facilitates virus entry, and in viral RNA-dependent RNA polymerase (RdRp). ELISA and limited proteolysis assays using nano- LC-MS/MS mapped polyP120 binding to ACE2, and site-directed mutagenesis confirmed interactions between ACE2 and SARS-CoV-2 RdRp and identified the specific amino acid residues involved. PolyP120 enhanced the proteasomal degradation of both ACE2 and RdRp, thus impairing replication of the British B.1.1.7 SARS-CoV-2 variant. We thus tested polyPs for functional interactions with the virus in SARS-CoV-2-infected Vero E6 and Caco2 cells and in primary human nasal epithelial cells. Delivery of a nebulized form of polyP120 reduced the amounts of viral positive-sense genomic and subgenomic RNAs, of RNA transcripts encoding proinflammatory cytokines, and of viral structural proteins, thereby presenting SARS-CoV-2 infection in cells in vitro.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Polyphosphates/pharmacology , SARS-CoV-2/drug effects , Administration, Inhalation , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , COVID-19/metabolism , COVID-19/virology , Caco-2 Cells , Chlorocebus aethiops , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cytokines/metabolism , HEK293 Cells , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , In Vitro Techniques , Models, Biological , Molecular Docking Simulation , Nebulizers and Vaporizers , Polyphosphates/administration & dosage , Polyphosphates/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Interaction Domains and Motifs , Proteolysis/drug effects , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Homology, Amino Acid , Signal Transduction/drug effects , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL